Chronic ethanol exposure changes dopamine D2 receptor splicing during retinoic acid-induced differentiation of human SH-SY5Y cells.
نویسندگان
چکیده
There is evidence for ethanol-induced impairment of the dopaminergic system in the brain during development. The dopamine D2 receptor (DRD2) and the dopamine transporter (DAT) are decisively involved in dopaminergic signaling. Two splice variants of DRD2 are known, with the short one (DRD2s) representing the autoreceptor and the long one (DRD2l) the postsynaptic receptor. We searched for a model to investigate the impact of chronic ethanol exposure and withdrawal on the expression of these proteins during neuronal differentiation. RA-induced differentiation of human neuroblastoma SH-SY5Y cells seems to represent such a model. Our real-time RT-PCR, Western blot, and immunocytochemistry analyses of undifferentiated and RA-differentiated cells have demonstrated the enhanced expression of both splice variants of DRD2, with the short one being stronger enhanced than the long one under RA-treatment, and the DRD2 distribution on cell bodies and neurites under both conditions. In contrast, DAT was down-regulated by RA. The DAT is functional both in undifferentiated and RA-differentiated cells as demonstrated by [(3)H]dopamine uptake. Chronic ethanol exposure during differentiation for up to 4 weeks resulted in a delayed up-regulation of DRD2s. Ethanol withdrawal caused an increased expression of DRD2l and a normalization of DRD2s. Thus the DRD2s/DRD2l ratio was still disturbed. The dopamine level was increased by RA-differentiation compared to controls and was diminished under RA/ethanol treatment and ethanol withdrawal compared to RA-only treated cells. In conclusion, chronic ethanol exposure impairs differentiation-dependent adaptation of dopaminergic proteins, specifically of DRD2s. RA-differentiating SH-SY5Y cells are suited to study the impact of chronic ethanol exposure and withdrawal on expression of dopaminergic proteins during neuronal differentiation.
منابع مشابه
Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.
Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the ...
متن کاملAnalysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation
Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuro...
متن کاملMicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF).
MicroRNAs (miRNAs) are an emerging class of non-coding endogenous RNAs involved in multiple cellular processes, including cell differentiation. Treatment with retinoic acid (RA) results in neural differentiation of neuroblastoma cells. We wanted to elucidate whether miRNAs contribute to the gene expression changes induced by RA in neuroblastoma cells and whether miRNA regulation is involved in ...
متن کاملRegulation of mammalian MOR-1 gene expression after chronic treatment with morphine
Morphine is an effective analgesic that acts by binding to the µ-opioid receptor (MOR) coded in the human by the OPRM1 gene. In the present study, we investigated the regulation of µ-opioid receptor (MOR-1) mRNA levels in all-trans-retinoic acid-differentiated SH-SY5Y human neuroblastoma cells under in vitro conditions with 10 µM morphine treatment for 24 h. In addition, we measured the MOR-1 l...
متن کاملPhenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling
Multiple genetic and environmental factors play a role in the development and progression of Parkinson's disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pharmacological reports : PR
دوره 62 4 شماره
صفحات -
تاریخ انتشار 2010